7n^2+117n-1350=0

Simple and best practice solution for 7n^2+117n-1350=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7n^2+117n-1350=0 equation:


Simplifying
7n2 + 117n + -1350 = 0

Reorder the terms:
-1350 + 117n + 7n2 = 0

Solving
-1350 + 117n + 7n2 = 0

Solving for variable 'n'.

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-192.8571429 + 16.71428571n + n2 = 0

Move the constant term to the right:

Add '192.8571429' to each side of the equation.
-192.8571429 + 16.71428571n + 192.8571429 + n2 = 0 + 192.8571429

Reorder the terms:
-192.8571429 + 192.8571429 + 16.71428571n + n2 = 0 + 192.8571429

Combine like terms: -192.8571429 + 192.8571429 = 0.0000000
0.0000000 + 16.71428571n + n2 = 0 + 192.8571429
16.71428571n + n2 = 0 + 192.8571429

Combine like terms: 0 + 192.8571429 = 192.8571429
16.71428571n + n2 = 192.8571429

The n term is 16.71428571n.  Take half its coefficient (8.357142855).
Square it (69.84183670) and add it to both sides.

Add '69.84183670' to each side of the equation.
16.71428571n + 69.84183670 + n2 = 192.8571429 + 69.84183670

Reorder the terms:
69.84183670 + 16.71428571n + n2 = 192.8571429 + 69.84183670

Combine like terms: 192.8571429 + 69.84183670 = 262.6989796
69.84183670 + 16.71428571n + n2 = 262.6989796

Factor a perfect square on the left side:
(n + 8.357142855)(n + 8.357142855) = 262.6989796

Calculate the square root of the right side: 16.207991227

Break this problem into two subproblems by setting 
(n + 8.357142855) equal to 16.207991227 and -16.207991227.

Subproblem 1

n + 8.357142855 = 16.207991227 Simplifying n + 8.357142855 = 16.207991227 Reorder the terms: 8.357142855 + n = 16.207991227 Solving 8.357142855 + n = 16.207991227 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-8.357142855' to each side of the equation. 8.357142855 + -8.357142855 + n = 16.207991227 + -8.357142855 Combine like terms: 8.357142855 + -8.357142855 = 0.000000000 0.000000000 + n = 16.207991227 + -8.357142855 n = 16.207991227 + -8.357142855 Combine like terms: 16.207991227 + -8.357142855 = 7.850848372 n = 7.850848372 Simplifying n = 7.850848372

Subproblem 2

n + 8.357142855 = -16.207991227 Simplifying n + 8.357142855 = -16.207991227 Reorder the terms: 8.357142855 + n = -16.207991227 Solving 8.357142855 + n = -16.207991227 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-8.357142855' to each side of the equation. 8.357142855 + -8.357142855 + n = -16.207991227 + -8.357142855 Combine like terms: 8.357142855 + -8.357142855 = 0.000000000 0.000000000 + n = -16.207991227 + -8.357142855 n = -16.207991227 + -8.357142855 Combine like terms: -16.207991227 + -8.357142855 = -24.565134082 n = -24.565134082 Simplifying n = -24.565134082

Solution

The solution to the problem is based on the solutions from the subproblems. n = {7.850848372, -24.565134082}

See similar equations:

| 5y^2-23y-10=0 | | 16(x-4)=80 | | 90-5x=10x-15 | | 2lx-1l=14 | | 56=(236-x)/2 | | 94=(274-x)/2 | | 72=(x-108)/2 | | 30=(210-x)/2 | | 6x-2=10x-22 | | 134=(226-x)/2 | | 60=(x-120)/2 | | 15x^6-11x^3+2=0 | | 40=(x-140)/2 | | A/4+1/3=5/6 | | 5x-3=7x-13 | | 74=(254-x)/2 | | (9x+10)+(3x-4)=66 | | 1/2x-1/3x=5/6 | | 3+16+36= | | 8[20-2(8)+6]= | | 28v^7-20v^4/4v^3 | | 2x+4=6x-22 | | -9[3-(-2)]-12(-2)= | | 2x^2+9x=-9 | | 30(-1-2)= | | 2(x+2+1/2x)=40 | | 3(-1-2)= | | 2x^2+9=-9 | | (-5)(12)+4(-4)+(-64)= | | x(7x^2-x-28-4)=0 | | 10/x=5/8 | | -6[-7+(2-7)]= |

Equations solver categories